Chasing clouds: Tropical cirrus in a high resolution model
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There are many different ways to chase clouds...

1. Storm chasing

Twister, 1996
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There are many different ways to chase clouds...

2. Storm tracking: e.g. following active deep convection
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Red contours: tracked storms

Blaz Gasparini



IWC (mg/kg)

There are many different ways to chase clouds...

3. Flow-following trajectories: e.g. LAGRANTO, embedded in a high res. GCM
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There are many different ways to chase clouds...

Positive

Negative

Storm chasing

High adrenalin, teamwork

Time-consuming, expensive,
needs a team

2D storm
tracking

Easy to implement, works with model and
satellite output, can be done in
post-processing

Limited to some climatic features
(e.g., MCS)

Flow-following
3D trajectories
(offline)

Useful for models, can be done in
post-processing

Needs high-frequency output, not
that easy to set up

Flow-following
3D trajectories
(online)

Elegant, insightful analysis, precise

Hard to set up, computationally
heavy, need to think in advance
what you want
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Tropical cirrus of two sources: convection and ice nucleation

- TTL cirrus

The two sources may (most commonly 11 <11 <)

respond very differently ey TR
to global warming! et PR

I iy, ~ .
- *—-

anvil cirrus = of convective origin
in situ cirrus = cirrus formed by ice nucleation
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SAM cloud-resolving model with improved ice microphysics
has a good skill in simulating tropical cirrus
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What is a simple way to tell the origin of cirrus clouds?
Are relevant for the radiative budget at TOA?

TOA = top-of-the-atmosphere
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There are many different ways to chase clouds...

Positive Negative

Time-consuming, expensive,

Storm chasing High adrenalin, teamwork
needs a team

Easy to implement, works with model

2D storm tracking |and satellite output, can be done in Limited to some climatic features

post-processing B W)
Flow-following 3D |Useful for models, can be done in Needs high-frequency output, not
trajectories (offline) |post-processing that easy to set up

Flow-following 3D
trajectories

(online, during
model integration)

Hard to set up, computationally
Elegant, insightful analysis, precise heavy, need to think in advance
what you want




There are many different ways to chase clouds...

Positive Negative

not usefti-for 3D medel data
/ ~

Flow-following 3D |Useful for models, can be done in Needs high-frequency output,
trajectories (offline) | post-processing not that easy to set up

Flow-following 3D
trajectories

(online, during
model integration)

Hard to set up, computationally
Elegant, insightful analysis, precise heavy, need to think in
advance what you want

What can we do instead?



Passive tracers: a simple method to track cloud evolution

Time after detrainment

if cloudy updraft
tracer =1

else:

tracer = decay
factor x tracer
value
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Passive tracers: a simple method to track cloud evolution

Time after detrainment

2200 2300 2400 2500 2600 2700 2800 2900 3000
red = cloud boundary km

Time after nucleation

|ce nucleatlon |n TTL cwrus
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km

if cloudy updraft
tracer =1

else:

tracer = decay
factor x tracer
value

if ice nucleation
tracer =1

else:

tracer = decay
factor x tracer
value
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Classifying cirrus origin with the help of passive tracers

in situ cirrus | ) Sometimes ice
L5 | nucleation occurs
E 10 , within anvils!
anvil cirrus
5 o
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km
anvil cirrus: if time after

detrainment > time after
nucleation

in situ cirrus if
time after nucleation
< time after detrain.  Time after nucleation
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Classifying cirrus origin with the help of passive tracers

Sometimes ice

nucleation occurs
within anvils!

in situ cirrus
15+ ‘
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km

in situ cirrus if anvils, where in

t nucl<t detr & situ ice nucleation present (but
t detr>24 h detrained ice mass dominant)

anvil cirrus: all within 24 h of
time after detrainment with no
new In situ nucleation
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Do we need to consider to
represent the tropical TOA energy balance?
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SRy SAM model
We can estimate the IWP-binned

cloud radiative effects (CRE)

Frequency
o o
o =
< [\

_ 100
CRE binned by IWP s
(How much a cloud of a 2
certain IWP contributes R
to CREs?) =
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. _ §°-°4 SAM model
We can estimate the IWP-binned ¢
cloud radiative effects (CRE) ==
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Apply the cirrus origin criterion and divide the PDF

Cirrus origin
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contribute ~7% of the tropical cirrus CRE

(~3 W m™ for both LW and SW CRE at the TOA)
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The journey of ice crystals from deep convection to thin cirrus




1. Tracers are an easy way to track evolution of
cloud properties in a climatological sense

contribute 5-10% to the total
radiative effect of cirrus clouds at the TOA
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oa%f,,,m@w blaz.gasparini@univie.ac.at
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: @mhﬂam in revision for ACP
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The journey of ice crystal from deep convection to thin cirrus
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The journey of ice crystal from deep convection to thin cirrus

11 detrained ice crystal evolution

Detrained parcel "age”
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During anvil lifetime we observe —
* a decrease in ice crystal number

. . 0.0 10.0 20.0 30.0
* a decrease In ice crystal size — 5




The journey of ice crystal from deep convection to thin cirrus
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altitude

Even thin TTL cirrus can substantially change CRH

A

Dinh et al., 2023
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Cloud radiative heating drives large-scale dynamics and its response to
global warming (e.g. Voigt et al., 2021, Dinh et al., 2023) and mesoscale circulations

(e.g. Gasparini et al., 2022)
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